skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boehnert, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For this study, we present and evaluate an improved agent-based modeling framework, the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0), designed to investigate relationships between hurricane forecast uncertainty and evacuation outcomes. Presented improvements include doubling its spatial resolution, using a quantitative approach to map real-world data onto the model’s virtual world, and increasing the number of possible risk magnitudes for wind, surge, and rain risk. To assess model realism, we compare FLEE 2.0’s simulated evacuations—specifically its evacuation orders, evacuation rates, and traffic—to available observational data collected during Hurricanes Irma, Dorian, and Ian. FLEE 2.0’s evacuation response is encouraging, given that FLEE 2.0 responds reasonably and differently to all three different types of forecast scenarios. FLEE 2.0 well represents the spatial distribution of observed evacuation rates, and relative to a lower spatial resolution version of the model, FLEE 2.0 better captures sharp gradients in evacuation behaviors across the coastlines and metropolitan areas. Quantitatively evaluating FLEE 2.0’s evacuation rates during Irma establishes model errors, uncertainties, and opportunities for improvement. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating and improving these types of models, and sets the stage for additional analyses to quantify the impacts of forecast track, intensity, and other positional errors on evacuation. Significance StatementThis paper describes and evaluates an updated version of a modeling system [the Forecasting Laboratory for Exploring the Evacuation-system, version 2.0 (FLEE 2.0)] designed to explore relationships between hurricane forecasts and evacuation impacts. FLEE 2.0’s simulated evacuations compare favorably with different types of observational evacuation data collected during Hurricanes Irma, Dorian, and Ian. A statistical comparison with Irma’s observed evacuation rates highlights uncertainties and opportunities for improvement in FLEE 2.0. In summary, this paper increases our confidence in FLEE 2.0, develops a framework for evaluating these types of models, and provides a foundation for additional work using FLEE 2.0 as a research tool. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026